
Operating Systems 2016/17
Solutions for Assignment 13

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

T-Question 13.1: File System Implementation

a. What three kernel data structures are required to manage open files? Explain the
meaning of each. 3 T-pt

Solution:

• Open File State: For each open file in the system, the kernel allocates a data
structure to hold the state of the open file. This structures includes the current
seek-pointer, granted access (read-only, etc.), and others. The state objects are
stored in a system-wide open file-table.

• Handle Mapping Table: To identify an open file, the user process must some-
how hold a reference to the it. Using pointers into kernel memory is severely
insecure, because the user could provide false pointers and thus lead the kernel
to interpret arbitrary memory as open file state objects (probably crashing the
system). In addition, exposing pointers to kernel data structures to user-mode is
considered an information leak.
A per-process open file table is thus used as indirection. The table is stored in the
process control block (PCB) in kernel memory and user-mode code only provides
indices into this (kernel-controlled) table to translate a handle to a kernel pointer
(for a state object).
In Linux, a file handle is called file descriptor.

• File Control Block: Each file in the file system needs to be described by some
form of data structure. In UNIX operating systems files are represented through
inodes.
To manage open files, each open file state object must also hold a reference to
the actual file and thus contains a reference to the corresponding file control
block (inode) structure (this can be a pointer if the OS loads FCBs into memory
for open files).
Note that if additional layers are added (e.g., a VFS), the open file state object
might only point to intermediate data structures (e.g., vNode).

b. Why is the file name not stored in the inode? 1 T-pt

Solution:
Although an inode identifies a single file, there might be multiple hard-links to the
same file (i.e., the file has more than one name). If the inode would contain the file
name it would not be clear what name to choose for a certain directory.

Another benefit of not storing the file name in the inode, but in the directory is the
possibility to increase spatial locality for directory listings.

c. How does the file system determine if an inode and thus the blocks allocated to the
file can be deleted? 1 T-pt

Solution:
The file system keeps a hard-link counter, which stores the number of references to
the inode. If the counter reaches zero, there are no more references to the file in the
directory tree, and the file system can delete the inode and the associated blocks.

1



d. What is the benefit of a file allocation table (FAT) compared to chained allocation? 1 T-pt

Solution:
Both methods use linking to determine the sequence of blocks that make up a file.
However, in contrast to chained allocation, a file allocation table separates the links
from the data blocks and thereby improves spatial locality for the linking information.
The FAT therefore can often be (partially) loaded into RAM, which improves access
performance.

e. Explain the concept of indexed disk space allocation. What approach allows this
allocation type to represent very large files while still being efficient for small files? 2 T-pt

Solution:
Files may be comprised of an arbitrary set of blocks. To identify the blocks that be-
long to a file, indexed space allocation stores a list of block pointers per file. The list
is ordered in the right way to reflect the file’s contents.

To address large files indexed space allocation uses multiple levels of index blocks,
comparable to a page table hierarchy. This structure introduces indirections that
harm performance. To maintain a good performance for small files, one often combi-
nes multiple such tables with increasing levels of indirection with increasing file size.
The first pointers in the inode thereby directly point to data blocks (good for small fi-
les), while pointers at the end of the inode point to other index blocks and hierarchies
of index blocks.

Total:
8T-pt

2


